Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.094
Filtrar
1.
Sci Total Environ ; 927: 172156, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588742

RESUMO

The variability and intrinsic mechanisms of oxidative stress induced by microplastics at different trophic levels in freshwater food chains are not well understood. To comprehensively assess the oxidative stress induced by polystyrene microplastics (PS-MPs) in freshwater food chains, the present study first quantified the oxidative stress induced by PS-MPs in organisms at different trophic levels using factorial experimental design and molecular dynamics methods. Then focuses on analyzing the variability of these responses across different trophic levels using mathematical statistical analysis. Notably, higher trophic level organisms exhibit diminished responses under PS-MPs exposure. Furthermore, the coexistence of multiple additives was found to mask these responses, with antioxidant plastic additives significantly influencing oxidative stress responses. Mechanism analysis using computational chemistry simulation determines that protein structure and amino acid characteristics are key factors driving PS-MPs induced oxidative stress variation in freshwater organisms at different nutrient levels. Increased hydrophobic additives induce protein helicalization and amino acid residue aggregation. This study systematically reveals the variability of biological oxidative stress response under different nutrient levels, emphasizing the pivotal role of chemical additives. Overall, this study offers crucial insights into PS-MPs' impact on oxidative stress responses in freshwater ecosystems, informing future environmental risk assessment.


Assuntos
Cadeia Alimentar , Água Doce , Microplásticos , Estresse Oxidativo , Poluentes Químicos da Água , Estresse Oxidativo/efeitos dos fármacos , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Água Doce/química , Animais , Poliestirenos/toxicidade , Organismos Aquáticos/efeitos dos fármacos
2.
Nature ; 628(8009): 776-781, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658683

RESUMO

Dissolved organic matter (DOM) is one of the most complex, dynamic and abundant sources of organic carbon, but its chemical reactivity remains uncertain1-3. Greater insights into DOM structural features could facilitate understanding its synthesis, turnover and processing in the global carbon cycle4,5. Here we use complementary multiplicity-edited 13C nuclear magnetic resonance (NMR) spectra to quantify key substructures assembling the carbon skeletons of DOM from four main Amazon rivers and two mid-size Swedish boreal lakes. We find that one type of reaction mechanism, oxidative dearomatization (ODA), widely used in organic synthetic chemistry to create natural product scaffolds6-10, is probably a key driver for generating structural diversity during processing of DOM that are rich in suitable polyphenolic precursor molecules. Our data suggest a high abundance of tetrahedral quaternary carbons bound to one oxygen and three carbon atoms (OCqC3 units). These units are rare in common biomolecules but could be readily produced by ODA of lignin-derived and tannin-derived polyphenols. Tautomerization of (poly)phenols by ODA creates non-planar cyclohexadienones, which are subject to immediate and parallel cycloadditions. This combination leads to a proliferation of structural diversity of DOM compounds from early stages of DOM processing, with an increase in oxygenated aliphatic structures. Overall, we propose that ODA is a key reaction mechanism for complexity acceleration in the processing of DOM molecules, creation of new oxygenated aliphatic molecules and that it could be prevalent in nature.


Assuntos
Água Doce , Oxirredução , Água Doce/química , Polifenóis/química , Carbono/química , Rios/química , Lagos/química , Lignina/química , Taninos/química , Suécia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Oxigênio/química
3.
Environ Sci Technol ; 58(10): 4637-4647, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38427796

RESUMO

Marine dissolved organic matter (DOM) is an important component of the global carbon cycle, yet its intricate composition and the sea salt matrix pose major challenges for chemical analysis. We introduce a direct injection, reversed-phase liquid chromatography ultrahigh resolution mass spectrometry approach to analyze marine DOM without the need for solid-phase extraction. Effective separation of salt and DOM is achieved with a large chromatographic column and an extended isocratic aqueous step. Postcolumn dilution of the sample flow with buffer-free solvents and implementing a counter gradient reduced salt buildup in the ion source and resulted in excellent repeatability. With this method, over 5,500 unique molecular formulas were detected from just 5.5 nmol carbon in 100 µL of filtered Arctic Ocean seawater. We observed a highly linear detector response for variable sample carbon concentrations and a high robustness against the salt matrix. Compared to solid-phase extracted DOM, our direct injection method demonstrated superior sensitivity for heteroatom-containing DOM. The direct analysis of seawater offers fast and simple sample preparation and avoids fractionation introduced by extraction. The method facilitates studies in environments, where only minimal sample volume is available e.g. in marine sediment pore water, ice cores, or permafrost soil solution. The small volume requirement also supports higher spatial (e.g., in soils) or temporal sample resolution (e.g., in culture experiments). Chromatographic separation adds further chemical information to molecular formulas, enhancing our understanding of marine biogeochemistry, chemodiversity, and ecological processes.


Assuntos
Matéria Orgânica Dissolvida , Água , Espectrometria de Massas/métodos , Água/química , Água Doce/química , Cloreto de Sódio , Carbono
5.
J Exp Biol ; 227(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38323461

RESUMO

Natural variation in environmental turbidity correlates with variation in the visual sensory system of many fishes, suggesting that turbidity may act as a strong selective agent on visual systems. Since many aquatic systems experience increased turbidity due to anthropogenic perturbations, it is important to understand the degree to which fish can respond to rapid shifts in their visual environment, and whether such responses can occur within the lifetime of an individual. We examined whether developmental exposure to turbidity (clear, <5 NTU; turbid, ∼9 NTU) influenced the size of morphological structures associated with vision in the African blue-lip cichlid Pseudocrenilabrus multicolor. Parental fish were collected from two sites (clear swamp, turbid river) in western Uganda. F1 broods from each population were split and reared under clear and turbid rearing treatments until maturity. We measured morphological traits associated with the visual sensory system (eye diameter, pupil diameter, axial length, brain mass, optic tectum volume) over the course of development. Age was significant in explaining variation in visual traits even when standardized for body size, suggesting an ontogenetic shift in the relative size of eyes and brains. When age groups were analyzed separately, young fish reared in turbid water grew larger eyes than fish reared in clear conditions. Population was important in the older age category, with swamp-origin fish having relatively larger eyes and optic lobes relative to river-origin fish. Plastic responses during development may be important for coping with a more variable visual environment associated with anthropogenically induced turbidity.


Assuntos
Ciclídeos , Animais , Ciclídeos/fisiologia , Olho , Encéfalo/anatomia & histologia , Água Doce/química , Visão Ocular
6.
Aquat Toxicol ; 268: 106866, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382184

RESUMO

Per- and polyfluorinated alkyl substances (PFAS) have raised international concerns due to their widespread use, environmental persistence and potential bioaccumulative and ecotoxicological effects. Therefore, the chemical industry has been dedicated to develop new generation fluorosurfactants which are aimed to replace the most concerning PFAS. Here we investigated the fate and effects of cyclic C6O4 (cC6O4), a compound used as alternative to long-chain perfluorocarboxylic acids, in freshwater mesocosms located in the Mediterranean region (Spain) over a period of 90 days. cC6O4 was applied as ammonium salt once at the following nominal concentrations: 0 µg/L (control), 1 µg/L, 20 µg/L, 400 µg/L, and 8,000 µg/L. The study shows that cC6O4 is relatively persistent in water (dissipation: 34-37 % after 90 days), has very low sorption capacity to sediments (sediment-water partition coefficient: 0.18-0.32 L/kg) and very limited bioconcentration (BCF: 0.09-0.94), bioaccumulation (BAF: 0.09-4.06) and biomagnification (BMF: 0.05-0.28) potential. cC6O4 did not result in significant adverse effects on aquatic populations and communities of phytoplankton and zooplankton at the tested concentrations. As for the macroinvertebrate community, the ephemeropteran Cloeon sp. showed a population decline at the highest test concentration on day 60 onwards, and a significant effect on the macroinvertebrate community was identified on the last sampling day at the same exposure level. Therefore, the calculated NOEC for cC6O4 in freshwater mesocosms exposed over a period of 90 days was 400 µg/L, which corresponded to a time weighted average concentration of 611 µg/L, given the water evaporation in the test systems. This concentration is about an order of magnitude higher than the highest exposure concentration monitored in freshwater ecosystems. Therefore, it can be concluded that cC6O4 poses insignificant ecological risks for freshwater plankton and macroinvertebrate communities given the current environmental exposure levels.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Animais , Ecossistema , Poluentes Químicos da Água/toxicidade , Zooplâncton , Água Doce/química , Água/farmacologia
7.
Water Res ; 253: 121260, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354661

RESUMO

The excited triplet-state of dissolved organic matter (3DOM*) is a major reactive intermediate in sunlit waters. Its quantum yield is important in understanding the fate of organic micropollutants. The degradation efficiency of its chemical probe, 2,4,6-trimeythlphenol (fTMP), is generally used as a proxy of the quantum yield. However, fTMP has been described and modelled only for freshwater systems. Therefore, this study quantified fTMP in inland freshwater and coastal seawater sampled in Japan by conducting steady-state photochemical experiments. Optical properties of water were then used to model fTMP. Results indicated that the inland freshwater DOM originated mainly from terrestrial sources, while the coastal seawater DOM were microbial-dominated. On average, inland freshwater exhibited lower fTMP (61.2 M-1) than coastal seawater (79.7 M-1) and the coastal seawater exhibited significant variations in the proportion of high-energy 3DOM* (> 250 kJ/mol). In addition, E2:E3 (ratio of absorbance at 254 to 365 nm) was positively correlated with fTMP of inland freshwater, coastal seawater, and the overall dataset. Catchment conditions such as forest coverage also influenced the production of 3DOM* and high-energy 3DOM* in inland freshwater. Furthermore, the developed models estimated fTMP based on the optical properties of both freshwater and seawater, providing valuable insights about 3DOM* photochemistry in the aquatic environment.


Assuntos
Matéria Orgânica Dissolvida , Poluentes Químicos da Água , Água Doce/química , Água do Mar/química , Água/química , Poluentes Químicos da Água/química
8.
Environ Sci Pollut Res Int ; 31(10): 15199-15208, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38291207

RESUMO

Anthropogenic activities lead to environmental contamination with foreign substances such as heavy metals. This work was aimed to monitor trace elements (total arsenic (As), cadmium (Cd), chrome (Cr), cobalt (Co), copper (Cu), lead (Pb), manganese (Mn), mercury (Hg), nickel (Ni), and zinc (Zn)) contamination levels (dry weight base) in three natural freshwater reservoirs of Oman including Al Khawd and Al Amarat (Muscat Governorate) and Surur area (Ad Dakhiliyah Governorate as control area) using a native benthic inland fish (Garra shamal; Cyprinidae) for the first time. The muscle and liver of a hundred and twenty G. shamal were collected to assess the degree of metal contamination. Atomic absorption spectrometry was used as an analytical technique. From the spectrum of analyzed elements, we found Zn as a major element in monitored areas. The statistically significant (P < 0.05) highest concentrations of Zn liver (0.275 ± 0.065 µg/g) were in Al Amarat compared to the other areas. The concentrations of monitored elements in the fish muscle were lower than the liver samples. Furthermore, the fish length was significantly correlated with the accumulation of Hg and Co in both muscle and liver samples. In all analyzed fish from Oman inland water, the concentrations of elements were below the permissible limits; however, additional research is needed.


Assuntos
Cyprinidae , Mercúrio , Metais Pesados , Oligoelementos , Animais , Oligoelementos/análise , Omã , Ecossistema , Metais Pesados/análise , Mercúrio/análise , Zinco/análise , Cádmio/análise , Cobalto/análise , Água Doce/química , Músculos/química , Fígado/química , Monitoramento Ambiental/métodos , Medição de Risco
9.
J Trace Elem Med Biol ; 83: 127371, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38176319

RESUMO

INTRODUCTION: Releasing of cerium oxide nanoparticles (nano-CeO2) to the nature has increased due to the widespread use in many fields ranging from cosmetics to the food industry. Therefore, nano-CeO2 has been included in the Organization for Economic Co-operation and Development's (OECD) priority list for engineering nanomaterials. In this study, the effects of nano-CeO2 on the freshwater mussels were investigated to reveal the impact on the freshwater systems on model organism. METHODS: First, the chemical and structural properties of nano-CeO2 were characterized in details. Second, the freshwater mussels were exposed to environmentally relevant concentrations of nano-CeO2 as 10 mg, 25 mg and 50 mg/L during 48-h and 7-d. Third, after the exposure periods, hemolymph and tissue samples were taken to analyse the Total Hemocyte Counts (THCs) histology and oxidative stress parameters (total antioxidant status, glutathione, glutathione-S-transferase, and advanced oxidative protein products). RESULTS: Significant decrease of the THCs was observed in the nano-CeO2 exposed mussels compared to the control group (P < 0.05). The histological results showed a positive association between nano-CeO2 exposure concentration in the water and level of tissue damage and histopathological alterations were detected in the gill and the digestive gland tissues. Oxidative stress parameters were slightly affected after exposure to nano-CeO2 (P > 0.05). In conclusion, this study showed that acute exposure of freshwater mussels to nano-CeO2 did not pose significant biological risk. However, it has been proven that mussels are able to accumulate nano-CeO2 significantly in their bodies. CONCLUSION: This suggests that nano-CeO2 may be a potential risk to other organisms in the ecosystem through trophic transfer in the food-web based on their habitat and niche in the ecosystem.


Assuntos
Bivalves , Cério , Nanopartículas , Unio , Animais , Unio/metabolismo , Ecossistema , Nanopartículas/toxicidade , Nanopartículas/química , Cério/toxicidade , Cério/química , Estresse Oxidativo , Água Doce/química , Glutationa/metabolismo
10.
Environ Sci Technol ; 58(3): 1473-1483, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38205949

RESUMO

Though toxins produced during harmful blooms of cyanobacteria present diverse risks to public health and the environment, surface water quality surveillance of cyanobacterial toxins is inconsistent, spatiotemporally limited, and routinely relies on ELISA kits to estimate total microcystins (MCs) in surface waters. Here, we employed liquid chromatography tandem mass spectrometry to examine common cyanotoxins, including five microcystins, three anatoxins, nodularin, cylindrospermopsin, and saxitoxin in 20 subtropical reservoirs spatially distributed across a pronounced annual rainfall gradient. Probabilistic environmental hazard analyses identified whether water quality values for cyanotoxins were exceeded and if these exceedances varied spatiotemporally. MC-LR was the most common congener detected, but it was not consistently observed with other toxins, including MC-YR, which was detected at the highest concentrations during spring with many observations above the California human recreation guideline (800 ng/L). Cylindrospermopsin was also quantitated in 40% of eutrophic reservoirs; these detections did not exceed a US Environmental Protection Agency swimming/advisory level (15,000 ng/L). Our observations have implications for routine water quality monitoring practices, which traditionally use ELISA kits to estimate MC levels and often limit collection of surface samples during summer months near reservoir impoundments, and further indicate that spatiotemporal surveillance efforts are necessary to understand cyanotoxins risks when harmful cyanobacteria blooms occur throughout the year.


Assuntos
Toxinas Bacterianas , Cianobactérias , Humanos , Microcistinas/análise , Qualidade da Água , Toxinas Marinhas , Toxinas Bacterianas/análise , Água Doce/análise , Água Doce/química , Água Doce/microbiologia , Toxinas de Cianobactérias , Cianobactérias/química , Monitoramento Ambiental/métodos
11.
Environ Pollut ; 344: 123420, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272165

RESUMO

The detection all pathogenic enteric viruses in water is expensive, time-consuming, and limited by numerous technical difficulties. Consequently, using reliable indicators such as F-specific RNA phages (FRNAPH) can be well adapted to assess the risk of viral contamination of fecal origin in surface waters. However, the variability of results inherent to the water matrix makes it difficult to use them routinely and to interpret viral risk. Spatial and temporal variability of surface waters can lead to underestimate this risk, in particular in the case of low loading. The use of bivalve mollusks as accumulating systems appears as a promising alternative, as recently highlighted with the freshwater mussel Dreissena polymorpha, but its capacity to accumulate and depurate FRNAPH needs to be better understood and described. The purpose of this study is to characterise the kinetics of accumulation and elimination of infectious FRNAPH by D. polymorpha in laboratory conditions, formalised by a toxico-kinetic (TK) mechanistic model. Accumulation and depuration experiments were performed at a laboratory scale to determine the relationship between the concentration of infectious FRNAPH in water and the concentration accumulated by D. polymorpha. The mussels accumulated infectious FRNAPH (3-5.4 × 104 PFU/g) in a fast and concentration-dependent way in only 48 h, as already recently demonstrated. The second exposure demonstrated that the kinetics of infectious FRNAPH depuration by D. polymorpha was independent to the exposure dose, with a T90 (time required to depurate 90 % of the accumulated concentration) of approximately 6 days. These results highlight the capacities of D. polymorpha to detect and reflect the viral pollution in an integrative way and over time, which is not possible with point water sampling. Different TK models were fitted based on the concentrations measured in the digestive tissues (DT) of D. polymorpha. The model has been developed to formalise the kinetics of phage accumulation in mussels tissues through the simultaneous estimation of accumulation and depuration rates. This model showed that accumulation depended on the exposure concentration, while depuration did not. Standardized D. polymorpha could be easily transplanted to the environment to predict viral concentrations using the TK model defined in the present study to predict the level of contamination of bodies of water on the basis of the level of phages accumulated by the organisms. It will be also provide a better understanding of the dynamics of the virus in continental waters at different time and spatial scales, and thereby contribute to the protection of freshwater resources.


Assuntos
Bivalves , Dreissena , Animais , Toxicocinética , Água Doce/química , Água
12.
Sci Total Environ ; 917: 170078, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38242472

RESUMO

Cyanobacteria are highly prevalent blue-green algae that grow in stagnant and nutrient-rich water bodies. Environmental conditions, such as eutrophication and human activities, increased the cyanobacterial blooms in freshwater resources worldwide. The excessive bloom formation has also resulted in an alarming surge of cyanobacterial toxins. Prolonged exposure to cyanotoxins is a potential threat to natural ecosystems, animal and human health by the spoilage of the quality of bathing and drinking water. Various molecular and analytical methods have been proposed to monitor their occurrence and understand their global distribution. Moreover, different physical, chemical, and biological approaches have been employed to control cyanobacterial blooms and their toxins to mitigate their occurrence. Numerous strategies have been engaged in drinking water treatment plants (DWTPs). However, the degree of treatment varies greatly and is primarily determined by the source, water properties, and operating parameters such as temperature, pH, and cyanotoxin variants and levels. A comprehensive compilation of methods, from traditional approaches to more advanced oxidation processes (AOPs), are presented for the removal of intracellular and extracellular cyanotoxins. This review discusses the effectiveness of various physicochemical operations and their limitations in a DWTP, for the removal of various cyanotoxins. These operations span from simple to advanced treatment levels with varying degrees of effectiveness and differing costs of implementation. Furthermore, mitigation measures applied in other toxin systems have been considered as alternative strategies.


Assuntos
Cianobactérias , Água Potável , Animais , Humanos , Toxinas de Cianobactérias , Ecossistema , Água Doce/química , Eutrofização , Cianobactérias/química , Microcistinas
13.
Sci Total Environ ; 917: 170468, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38296093

RESUMO

Micro- (MPs) and nanoplastics (NPs) are currently ubiquitous in the ecosystems, and freshwater biota is still insufficiently studied to understand the global fate, transport paths, and consequences of their presence. Thus, in this study, we investigated the role of bivalves and a trophic transfer of MPs and NPs in an experimental food chain. The food chain consisted of terrestrial non-selective detritivore Dendrobaena (Eisenia) sp., freshwater benthic filter feeder Unio tumidus, and freshwater benthic detritivore-collectors Asellus aquaticus or Gammarus sp. Animals were exposed to different fluorescently labeled micro- and nanoplastics (PMMA 20 µm, nanoPS 15-18 nm, and 100 nm, PS 1 µm and 20 µm, PE from cosmetics) as well as to the faeces of animals exposed to plastics to assess their influence on the environmental transportation, availability to biota, and bioaccumulation of supplied particles. Damaged and intact fluorescent particles were observed in the faeces of terrestrial detritivores and in the droppings of aquatic filter feeders, respectively. They were also present in the guts of bivalves and of crustaceans which were fed with bivalve droppings. Bivalves (Unio tumidus, and additionally Unio pictorum, and Sphaerium corneum) produced droppings containing micro- and nanoparticles filtered from suspension and deposited them onto the tank bottom, making them available for broader feeding guilds of animals (e.g. collectors, like crustaceans). Finally, the natural ageing of PS and its morphological changes, leakage of the fluorescent labelling, and agglomeration of particles were demonstrated. That supports our hypothesis of the crucial role of the characterization of physical and chemical materials in adequately understanding the mechanisms of their interaction with biota. Microscopical methods (confocal, fluorescent, scanning electron) and Raman and FT-IR spectroscopy were used to track the particles' passage in a food web and monitor structural changes of the MPs' and NPs' surface.


Assuntos
Bivalves , Unio , Poluentes Químicos da Água , Animais , Microplásticos , Cadeia Alimentar , Espécies Sentinelas , Ecossistema , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise , Plásticos , Água Doce/química
14.
Environ Pollut ; 341: 122935, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977358

RESUMO

All plastic contains additives. Once in the environment, these will start to leach out and will expose and harm aquatic biota, causing potentially lethal and sub-lethal toxic effects. Even though life cycle assessment covers the toxic impacts of several thousands of chemicals, models to assess the toxic impacts of plastic additives are only emerging. We gathered 461 data points from the literature (266 for freshwater and 195 for marine ecosystems) for 75 species belonging to 9 different phyla. The endpoints effective concentration and lethal concentration, no observed effects concentrations and lowest observed effect concentration tested in acute and chronic exposure, were harmonized into chronic values by applying extrapolation factors. The collected data points covered 75 main plastic additives. This allowed us to calculate 25 Effect factors, 19 for single chemicals and four for overarching categories (alkylphenols, benzophenones, brominated flame retardants and phosphates. In addition, we calculated an aggregated effect factor for chemicals that did not fit in any of the previous groups, as well as a Generic effect factor including 404 gathered data points. The estimated potentially affected fraction (PAF) for the single additives varied between 20.69 PAF·m3·kg-1 for diethyl phthalate and 11081.85 PAF·m3·kg-1 for 4-Nonylphenol. The factors can in future be combined with fate and exposure factors to derive a characterization factor for toxicity caused by additives in aquatic species. This is an important advancement for the assessment of the impacts of plastic debris on aquatic species, thus providing information for decision-makers, as well as guiding policies for the use of additives, ultimately aiming to make the plastic value chain more sustainable.


Assuntos
Retardadores de Chama , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Ecossistema , Água Doce/química , Retardadores de Chama/toxicidade , Estágios do Ciclo de Vida
15.
Chemosphere ; 349: 140706, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37992907

RESUMO

The antidepressant fluoxetine is frequently detected in aquatic ecosystems, yet the effects on aquatic communities and ecosystems are still largely unknown. Therefore the aim of this study is to assess the effects of the long-term application of fluoxetine on key components of aquatic ecosystems including macroinvertebrate-, zooplankton-, phytoplankton- and microbial communities and organic matter decomposition by using traditional and non-traditional assessment methods. For this, we exposed 18 outdoor mesocosms (water volume of 1530 L and 10 cm of sediment) to five different concentrations of fluoxetine (0.2, 2, 20 and 200 µg/L) for eight weeks, followed by an eight-week recovery period. We quantified population and community effects by morphological identification, environmental DNA metabarcoding, in vitro and in vivo bioassays and measured organic matter decomposition as a measure of ecosystem functioning. We found effects of fluoxetine on bacterial, algal, zooplankton and macroinvertebrate communities and decomposition rates, mainly for the highest (200 µg/L) treatment. Treatment-related decreases in abundances were found for damselfly larvae (NOEC of 0.2 µg/L) and Sphaeriidae bivalves (NOEC of 20 µg/L), whereas Asellus aquaticus increased in abundance (NOEC <0.2 µg/L). Fluoxetine decreased photosynthetic activity and primary production of the suspended algae community. eDNA assessment provided additional insights by revealing that the algae belonging to the class Cryptophyceae and certain cyanobacteria taxa were the most negatively responding taxa to fluoxetine. Our results, together with results of others, suggest that fluoxetine can alter community structure and ecosystem functioning and that some impacts of fluoxetine on certain taxa can already be observed at environmentally realistic concentrations.


Assuntos
Ecossistema , Poluentes Químicos da Água , Animais , Fluoxetina/toxicidade , Código de Barras de DNA Taxonômico , Água Doce/química , Zooplâncton , Fitoplâncton , Antidepressivos/farmacologia , Bioensaio , Poluentes Químicos da Água/análise
16.
Toxicon ; 237: 107551, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070753

RESUMO

The presence of microcystins (MCs) is increasingly being reported in coastal areas worldwide. To provide reliable data regarding this emerging concern, reproducible and accurate methods are required to quantify MCs in salt-containing samples. Herein, we characterized methods of extraction and analysis by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) for nine MCs and one nodularin (NOD) variants in both cyanobacteria (intracellular) and dissolved forms (extracellular). Different approaches have been used to cope with salinity for the extraction of dissolved MCs but none assessed solid phase extraction (SPE) so far. It was found that salt had negligible effect on the SPE recovery of dissolved MCs using the C18 cartridge while an overestimation up to 67% was noted for some variants with a polymeric sorbent. The limits of detection (LOD) and quantification (LOQ) were 1.0-22 and 5.5-124 pg on column for the intracellular toxins, while 0.05-0.81 and 0.13-2.4 ng/mL were obtained for dissolved toxins. Extraction recoveries were excellent for intracellular (89-121%) and good to excellent for extracellular cyanotoxins (73-102%) while matrix effects were considered neglectable (<12% for 16/20 toxin-matrix combinations), except for the two MC-RR variants. The strategy based on the application of a corrective factor to compensate for losses proved useful as the accuracy was satisfactory (73-117% for intra- and 81-139% for extracellular cyanotoxins, bias <10% for 46/60 conditions, with a few exceptions), with acceptable precisions (intra- and inter-days variabilities <11%). We then applied this method on natural colonies of Microcystis spp. subjected to a salt shock, mimicking their estuarine transfer, in order to assess their survival and to quantify their toxins. The colonies of Microcystis spp. had both their growth and photosynthetic activity impaired at salinities from 10, while toxins remained mainly intracellular (>76%) even at salinity 20, suggesting a potential health risk and contamination of estuarine organisms.


Assuntos
Cianobactérias , Microcystis , Microcistinas/análise , Cromatografia Líquida/métodos , Toxinas de Cianobactérias , Espectrometria de Massas em Tandem/métodos , Água Doce/química , Cromatografia Líquida de Alta Pressão , Extração em Fase Sólida
17.
Environ Pollut ; 337: 122512, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37673323

RESUMO

The antioxidant N-(1,3-Dimethylbutyl)-N'-phenyl-p- phenylenediamine (6PPD) is used to protect the rubber in tires from oxidation, which extends the life of the tire. When oxidized, 6PPD is transformed into 6PPD-quinone (6PPDQ). 6PPDQ, along with other tire ingredients, can enter aquatic ecosystems through the transport of tire wear particles in runoff during a precipitation event. The mass mortality of coho salmon following precipitation events in urban areas lead to the discovery that 6PPDQ is the likely cause due to coho salmon's relatively high sensitivity to 6PPDQ. The assessment of 6PPDQ toxicity to other aquatic species has expanded, but it has focused on fish. This study investigated the toxicity of 6PPDQ to four freshwater invertebrate species, larval burrowing mayfly (Hexagenia spp.), juvenile cladoceran (Daphnia magna), file ramshorn snail embryo (Planorbella pilsbryi), and adult washboard mussel (Megalonaias nervosa). For all four species, the highest concentration of 6PPDQ tested did not result in significant mortality. This translated into the determination of the highest concentration that did not cause significant mortality (NOEC) for Hexagenia spp., D. magna, P. pilsbryi, and M. nervosa of 232.0, 42.0, 11.7, and 17.9 µg/L, respectively. The data from this study indicate that freshwater invertebrates are not as sensitive to 6PPDQ as some salmonid species (e.g., coho salmon Oncorhynchus kisutch). This study also analyzed 6PPDQ in road runoff from around the city of Guelph in Ontario, Canada. 6PPQ was detected in all samples but the concentration was two orders of magnitude lower than the NOECs for the four tested species of freshwater invertebrate.


Assuntos
Benzoquinonas , Água Doce , Invertebrados , Fenilenodiaminas , Animais , Ecossistema , Ephemeroptera/efeitos dos fármacos , Água Doce/química , Invertebrados/efeitos dos fármacos , Oncorhynchus kisutch , Ontário , Fenilenodiaminas/análise , Fenilenodiaminas/toxicidade , Benzoquinonas/análise , Benzoquinonas/toxicidade
18.
Environ Toxicol Chem ; 42(11): 2478-2489, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37727898

RESUMO

Sea levels across the planet are rising, particularly along the eastern coast of the United States. Climate-induced sea level rise can result in the inundation and intrusion of seawater into freshwater drainages. This would alter salinity regimes and lead to the salinization of coastal freshwater ecosystems. Increased salinity levels in freshwater can negatively affect freshwater-dependent species, including native mussels belonging to the order Unionida, which are highly sensitive to changes in water quality. Sea salt is largely made up of sodium and chloride ions, forming sodium chloride, a known toxicant to freshwater mussels. However, sea salt is a mixture that also contains other major ions, including potassium, sulfate, calcium, strontium, and magnesium, among others. Freshwater mussels exposed to sea salt would be exposed to each of the sea salt ions at the same time, resulting in a mixture toxicity effect. The mixture toxicity of these ions on early life stages of freshwater mussels is largely unknown because most research to date has evaluated individual salt ions in relative isolation. Therefore, we conducted acute toxicity tests on early life stages (glochidia and juvenile) of three freshwater mussel species that inhabit Atlantic Slope drainages (nonsalinity-adapted Atlanticoncha ochracea, salinity-adapted A. ochracea, Sagittunio nasutus, and Utterbackiana implicata). Glochidia and juveniles of each species were exposed to a control and six concentrations of Instant Ocean® Sea Salt (IOSS), a synthetic sea salt that closely resembles the ionic composition of natural sea salt. Exposure concentrations were 1 part(s) per thousand (ppt), 2 ppt, 8.5 ppt, 12.5 ppt, 17 ppt, and 34 ppt. We calculated the median effect concentration (EC50) for each of the eight acute toxicity tests and found that glochidia were more sensitive than juveniles to IOSS. At hour 24 EC50s for the glochidia ranged from 0.38 to 3.6 ppt, with the most sensitive freshwater mussel being the nonsalinity-adapted A. ochracea, exhibiting an EC50 of 0.38 ppt (95% confidence interval [CI] 0.33-0.44). Juvenile freshwater mussels exhibited EC50s at hour 96 ranging from 5.0 to 10.4 ppt, with the least sensitive freshwater mussel being the nonsalinity-adapted A. ochracea, exhibiting an EC50 of 10.4 ppt (95% CI 9.1-12.0). Our results show that acute exposure to sea salt adversely affects freshwater mussel viability, particularly glochidia. This information can be used to enhance freshwater mussel conservation strategies in regions that are or will be impacted by climate-induced sea level rise and associated freshwater salinization. Environ Toxicol Chem 2023;42:2478-2489. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Bivalves , Unionidae , Poluentes Químicos da Água , Animais , Ecossistema , Elevação do Nível do Mar , Água Doce/química , Cloreto de Sódio/toxicidade , Cloretos , Alimentos Marinhos , Poluentes Químicos da Água/análise
19.
J Fish Biol ; 103(6): 1357-1373, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37632330

RESUMO

River sharks (Glyphis spp.) and some sawfishes (Pristidae) inhabit riverine environments, although their long-term habitat use patterns are poorly known. We investigated the diadromous movements of the northern river shark (Glyphis garricki), speartooth shark (Glyphis glyphis), narrow sawfish (Anoxypristis cuspidata), and largetooth sawfish (Pristis pristis) using in situ laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on vertebrae to recover elemental ratios over each individual's lifetime. We also measured elemental ratios for the bull shark (Carcharhinus leucas) and a range of inshore and offshore stenohaline marine species to assist in interpretation of results. Barium (Ba) was found to be an effective indicator of freshwater use, whereas lithium (Li) and strontium (Sr) were effective indicators of marine water use. The relationships between Ba and Li and Ba and Sr were negatively correlated, whereas the relationship between Li and Sr was positively correlated. Both river shark species had elemental signatures indicative of prolonged use of upper-estuarine environments, whereas adults appear to mainly use lower-estuarine environments rather than marine environments. Decreases in Li:Ba and Sr:Ba at the end of the prenatal growth zone of P. pristis samples indicated that parturition likely occurs in fresh water. There was limited evidence of prolonged riverine habitat use for A. cuspidata. The results of this study support elemental-environment relationships observed in teleost otoliths and indicate that in situ LA-ICP-MS elemental characterization is applicable to a wide range of elasmobranch species as a discriminator for use and movement across salinity gradients. A greater understanding of processes that lead to element incorporation in vertebrae, and relative concentrations in vertebrae with respect to the ambient environment, will improve the applicability of elemental analysis to understand movements across the life history of elasmobranchs into the future.


Assuntos
Tubarões , Rajidae , Animais , Tubarões/metabolismo , Ecossistema , Água Doce/química , Rajidae/metabolismo , Estrôncio/análise , Coluna Vertebral/química
20.
Environ Toxicol Chem ; 42(12): 2666-2683, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37606176

RESUMO

The effects assessment of metals is mainly based on data of single metals on single species, thereby not accounting for effects of metal mixtures or effects of species interactions. Both of these effects were tested in combination, thereby hypothesizing that the sensitivity of a community to synergistic mixture toxicity depends on the correlation of single-species sensitivities among the single metals. Single-metal and metal-mixture effects were tested in full concentration-response experiments (fixed ray of 1:1:3 and 5:1:13 mass ratio Ni:Cu:Zn) on eight single freshwater algal species and 14 algal communities of four species each. The mean correlation of single-species median effect concentrations among the single metals (Ni-Cu, Cu-Zn, and Zn-Ni) for all species in a community ( r ̅ ) ranged from -0.4 to 0.9 among the communities; most of these (12/14) were positive. Functional endpoints (total biomass) were overall less sensitive than structural endpoints (Bray-Curtis similarity index) for communities with positively correlated single-species sensitivities among the single metals ( r ̅ > 0.33 ), suggesting that such correlations indicate functional redundancy under metal-mixture stress. Antagonistic metal-mixture interactions were predominantly found in single species, whereas metal-mixture interactions were antagonistic and surprisingly synergistic for the communities, irrespective of the reference mixture model used (concentration addition or independent action). The mixture interactions close to the carrying capacity (day 7) of communities gradually shifted from antagonism to more noninteractions with increasing correlation of single-species sensitivities among the single metals. Overall, this suggests that functional redundancy under mixed-metal stress comes at the cost of reduced biodiversity and that synergisms can emerge at the community level without any synergisms on the single-species level. Environ Toxicol Chem 2023;42:2666-2683. © 2023 SETAC.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Metais , Zinco/toxicidade , Zinco/análise , Água Doce/química , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...